| 1 | import numpy
|
|---|
| 2 | from numpy import ndarray, frombuffer
|
|---|
| 3 | import multiprocessing as mp
|
|---|
| 4 | from time import sleep
|
|---|
| 5 |
|
|---|
| 6 | class SharedNumpyArray(ndarray):
|
|---|
| 7 | '''
|
|---|
| 8 | multiprocessing.Array types are thread-safe by default, but are
|
|---|
| 9 | horribly inefficient in getting/setting data. If you want speed you
|
|---|
| 10 | need to create a Numpy array pointing to the same shared memory,
|
|---|
| 11 | but this circumvents the automatic acquire/release behaviour. To
|
|---|
| 12 | provide thread-safe behaviour would therefore require carrying through
|
|---|
| 13 | both the original Array (for the lock) and the derived Numpy array.
|
|---|
| 14 | This class is an attempt to get the best of both worlds: it behaves
|
|---|
| 15 | just like a normal Numpy array, but carries through the Array lock
|
|---|
| 16 | object and its methods. To use it:
|
|---|
| 17 |
|
|---|
| 18 | (In master process):
|
|---|
| 19 | import multiprocessing as mp
|
|---|
| 20 | mp_array = mp.Array(type, data_or_init)
|
|---|
| 21 | shared_numpy = SharedNumpyArray(mp_array)
|
|---|
| 22 |
|
|---|
| 23 | Pass shared_numpy to the thread Pool init function or to the thread
|
|---|
| 24 | itself if creating threads on the fly.
|
|---|
| 25 |
|
|---|
| 26 | (In each thread):
|
|---|
| 27 | If thread safety is not required (that is, different threads don't
|
|---|
| 28 | attempt to read and write to the same index), then just use it like
|
|---|
| 29 | any other array. If thread safety *is* required:
|
|---|
| 30 |
|
|---|
| 31 | with shared_numpy.get_lock():
|
|---|
| 32 | do_something(shared_numpy)
|
|---|
| 33 | '''
|
|---|
| 34 | def __new__(cls, mp_array):
|
|---|
| 35 | if mp_array is None:
|
|---|
| 36 | raise TypeError('Please provide a multiprocessing.Array object\
|
|---|
| 37 | with a thread lock!')
|
|---|
| 38 | obj = frombuffer(mp_array.get_obj(), type(mp_array[0])).view(cls)
|
|---|
| 39 | obj._mparray = mp_array
|
|---|
| 40 | obj.get_lock = mp_array.get_lock
|
|---|
| 41 | obj.acquire = mp_array.acquire
|
|---|
| 42 | obj.release = mp_array.release
|
|---|
| 43 | return obj
|
|---|
| 44 |
|
|---|
| 45 | def __array_finalize__(self, obj):
|
|---|
| 46 | if obj is None:
|
|---|
| 47 | return
|
|---|
| 48 |
|
|---|
| 49 | self._mparray = getattr(obj, '_mparray', None)
|
|---|
| 50 | self.get_lock = getattr(obj, 'get_lock', None)
|
|---|
| 51 | self.acquire = getattr(obj, 'acquire', None)
|
|---|
| 52 | self.release = getattr(obj, 'release', None)
|
|---|
| 53 |
|
|---|
| 54 | def error_callback(e):
|
|---|
| 55 | print(e)
|
|---|
| 56 |
|
|---|
| 57 |
|
|---|
| 58 | def pool_init(arr):
|
|---|
| 59 | global shared_array
|
|---|
| 60 | shared_array = arr
|
|---|
| 61 |
|
|---|
| 62 | def thread_safe_add_one():
|
|---|
| 63 | global shared_array
|
|---|
| 64 | for i in range(50):
|
|---|
| 65 | with shared_array.get_lock():
|
|---|
| 66 | shared_arr_cache = shared_array.copy()
|
|---|
| 67 | sleep(1e-3)
|
|---|
| 68 | shared_array[:] = shared_arr_cache+1
|
|---|
| 69 |
|
|---|
| 70 | def thread_unsafe_add_one():
|
|---|
| 71 | global shared_array
|
|---|
| 72 | for i in range(50):
|
|---|
| 73 | shared_arr_cache = shared_array.copy()
|
|---|
| 74 | sleep(1e-3)
|
|---|
| 75 | shared_array[:] = shared_arr_cache+1
|
|---|
| 76 |
|
|---|
| 77 | mp_arr = mp.Array('d', 10)
|
|---|
| 78 | s_arr = SharedNumpyArray(mp_arr).reshape((2,5))
|
|---|
| 79 |
|
|---|
| 80 | with mp.Pool(processes = 3, initializer = pool_init, initargs = (s_arr,)) as p:
|
|---|
| 81 | for i in range(3):
|
|---|
| 82 | p.apply_async(thread_safe_add_one,
|
|---|
| 83 | args=(),
|
|---|
| 84 | error_callback=error_callback)
|
|---|
| 85 | p.close()
|
|---|
| 86 | p.join()
|
|---|
| 87 | print('Values should all equal 150')
|
|---|
| 88 | print(s_arr)
|
|---|
| 89 |
|
|---|
| 90 | s_arr [:]=0
|
|---|
| 91 |
|
|---|
| 92 | with mp.Pool(processes = 3, initializer = pool_init, initargs = (s_arr,)) as p:
|
|---|
| 93 | for i in range(3):
|
|---|
| 94 | p.apply_async(thread_unsafe_add_one,
|
|---|
| 95 | args=(),
|
|---|
| 96 | error_callback=error_callback)
|
|---|
| 97 | p.close()
|
|---|
| 98 | p.join()
|
|---|
| 99 | print('Values should NOT all equal 150')
|
|---|
| 100 | print(s_arr)
|
|---|
| 101 |
|
|---|
| 102 |
|
|---|