| 1 | from numpy import ndarray, frombuffer
|
|---|
| 2 | import multiprocessing as mp
|
|---|
| 3 | from multiprocessing import sharedctypes
|
|---|
| 4 | import ctypes
|
|---|
| 5 | from time import sleep
|
|---|
| 6 |
|
|---|
| 7 | def TypedMPArray(typecode_or_type, size_or_initializer, *, lock=True, ctx=None):
|
|---|
| 8 | obj = mp.Array(typecode_or_type, size_or_initializer)
|
|---|
| 9 |
|
|---|
| 10 | obj.dtype = mp.sharedctypes.typecode_to_type.get(typecode_or_type, typecode_or_type)
|
|---|
| 11 |
|
|---|
| 12 | return obj
|
|---|
| 13 |
|
|---|
| 14 |
|
|---|
| 15 | class SharedNumpyArray(ndarray):
|
|---|
| 16 | '''
|
|---|
| 17 | multiprocessing.Array types are thread-safe by default, but are
|
|---|
| 18 | horribly inefficient in getting/setting data. If you want speed you
|
|---|
| 19 | need to create a Numpy array pointing to the same shared memory,
|
|---|
| 20 | but this circumvents the automatic acquire/release behaviour. To
|
|---|
| 21 | provide thread-safe behaviour would therefore require carrying through
|
|---|
| 22 | both the original Array (for the lock) and the derived Numpy array.
|
|---|
| 23 | This class is an attempt to get the best of both worlds: it behaves
|
|---|
| 24 | just like a normal Numpy array, but carries through the Array lock
|
|---|
| 25 | object and its methods. To use it:
|
|---|
| 26 |
|
|---|
| 27 | (In master process):
|
|---|
| 28 | import multiprocessing as mp
|
|---|
| 29 | mp_array = mp.Array(type, data_or_init)
|
|---|
| 30 | shared_numpy = SharedNumpyArray(mp_array)
|
|---|
| 31 |
|
|---|
| 32 | Pass shared_numpy to the thread Pool init function or to the thread
|
|---|
| 33 | itself if creating threads on the fly.
|
|---|
| 34 |
|
|---|
| 35 | (In each thread):
|
|---|
| 36 | If thread safety is not required (that is, different threads don't
|
|---|
| 37 | attempt to read and write to the same index), then just use it like
|
|---|
| 38 | any other array. If thread safety *is* required:
|
|---|
| 39 |
|
|---|
| 40 | with shared_numpy.get_lock():
|
|---|
| 41 | do_something(shared_numpy)
|
|---|
| 42 | '''
|
|---|
| 43 | def __new__(cls, mp_array):
|
|---|
| 44 | if mp_array is None:
|
|---|
| 45 | raise TypeError('Please provide a TypedMPArray object\
|
|---|
| 46 | with a thread lock!')
|
|---|
| 47 | obj = frombuffer(mp_array.get_obj(), mp_array.dtype).view(cls)
|
|---|
| 48 | obj._mparray = mp_array
|
|---|
| 49 | obj.get_lock = mp_array.get_lock
|
|---|
| 50 | obj.acquire = mp_array.acquire
|
|---|
| 51 | obj.release = mp_array.release
|
|---|
| 52 | return obj
|
|---|
| 53 |
|
|---|
| 54 | def __array_finalize__(self, obj):
|
|---|
| 55 | if obj is None:
|
|---|
| 56 | return
|
|---|
| 57 |
|
|---|
| 58 | self._mparray = getattr(obj, '_mparray', None)
|
|---|
| 59 | self.get_lock = getattr(obj, 'get_lock', None)
|
|---|
| 60 | self.acquire = getattr(obj, 'acquire', None)
|
|---|
| 61 | self.release = getattr(obj, 'release', None)
|
|---|
| 62 |
|
|---|
| 63 | def error_callback(e):
|
|---|
| 64 | print(e)
|
|---|
| 65 |
|
|---|
| 66 |
|
|---|
| 67 | def pool_init(arr):
|
|---|
| 68 | global shared_array
|
|---|
| 69 | shared_array = arr
|
|---|
| 70 |
|
|---|
| 71 | def thread_safe_add_one():
|
|---|
| 72 | global shared_array
|
|---|
| 73 | for i in range(50):
|
|---|
| 74 | with shared_array.get_lock():
|
|---|
| 75 | shared_arr_cache = shared_array.copy()
|
|---|
| 76 | sleep(1e-3)
|
|---|
| 77 | shared_array[:] = shared_arr_cache+1
|
|---|
| 78 |
|
|---|
| 79 | def thread_unsafe_add_one():
|
|---|
| 80 | global shared_array
|
|---|
| 81 | for i in range(50):
|
|---|
| 82 | shared_arr_cache = shared_array.copy()
|
|---|
| 83 | sleep(1e-3)
|
|---|
| 84 | shared_array[:] = shared_arr_cache+1
|
|---|
| 85 |
|
|---|
| 86 | mp_arr = TypedMPArray(ctypes.c_longlong, 10)
|
|---|
| 87 | print(mp_arr.dtype)
|
|---|
| 88 | s_arr = SharedNumpyArray(mp_arr).reshape((2,5))
|
|---|
| 89 |
|
|---|
| 90 | s_arr = SharedNumpyArray(TypedMPArray(ctypes.c_long, 10)).reshape((2,5))
|
|---|
| 91 | with mp.Pool(processes = 3, initializer = pool_init, initargs = (s_arr,)) as p:
|
|---|
| 92 | for i in range(3):
|
|---|
| 93 | p.apply_async(thread_safe_add_one,
|
|---|
| 94 | args=(),
|
|---|
| 95 | error_callback=error_callback)
|
|---|
| 96 | p.close()
|
|---|
| 97 | p.join()
|
|---|
| 98 | print('Values should all equal 150')
|
|---|
| 99 | print(s_arr)
|
|---|
| 100 |
|
|---|
| 101 | s_arr [:]=0
|
|---|
| 102 |
|
|---|
| 103 | with mp.Pool(processes = 3, initializer = pool_init, initargs = (s_arr,)) as p:
|
|---|
| 104 | for i in range(3):
|
|---|
| 105 | p.apply_async(thread_unsafe_add_one,
|
|---|
| 106 | args=(),
|
|---|
| 107 | error_callback=error_callback)
|
|---|
| 108 | p.close()
|
|---|
| 109 | p.join()
|
|---|
| 110 | print('Values should NOT all equal 150')
|
|---|
| 111 | print(s_arr)
|
|---|
| 112 |
|
|---|
| 113 |
|
|---|