	UCSF Chimera QUICK REFERENCE GUIDE November 2008
	Commands *reverse function command available
2dlabels	create arbitrary text labels and place them in 2D
$a c$	enable accelerators (keyboard shortcuts)
addaa	add an amino acid to a peptide C-terminus
addcharge	assign partial charges to atoms
addh	add hydrogens
alias*	create an alias or list the existing aliases
align	align two atoms or sets of atoms along the line of sight
angle	measure a bond angle or torsion angle
bond*	add/delete bonds
bondcolor*	color bonds independently from atoms
bonddisplay	control how bond display depends on atom display
bondrepr	control bond style (wire, stick)
bondzone*	make zoning tools use points along bonds
brotation	make a bond rotatable
cd	change the working directory
center	center the view on specified atoms
chain	chain specified atoms, undisplay the others
chirality	report the R/S configuration of a chiral center
clip*	move clipping planes
close	close a model
cofr*	report or change the center of rotation
color*	color atoms/bonds, ribbons, labels, and surfaces
colordef	define a new color
combine	combine molecule models into a single model
conic	create a shadowed space-filling image
copy	save an image (Chimera graphics or POV-Ray)
crystalcontacts	identify clashes between PDB symmetry copies
defattr	assign attribute values to atoms, residues, or models
delete	delete atoms and bonds
display*	display specified atoms
distance*	measure the distance between two atoms
echo	send text to the status line and Reply Log
export	save the scene (x3d, vrml, pov-ray, renderman, obj)
findclash*	identify clashes and/or contacts
focus*	adjust the view and center of rotation
freeze	stop all motion
getcrd	report untransformed coordinates
hbonds*	(findhbond) identify possible hydrogen bonds
help	display the manual page for a command
hkcage	create a hexagon/pentagon mesh that covers an icosahedron
intersurf	generate and display interface surfaces
ksdssp	determine secondary structure from protein coordinates
label*	display atom labels
labelopt	control the information in atom labels
linewidth	control the width of wire bonds

load
longbond ${ }^{*}$
mask
match matrixcopy matrixget matrixset
mclip* meshmol minimize mmaker modelcolor modeldisplay* molmap morph
move
movie
$m s c^{*}$
namesel
neon
objdisplay*
open*
pdbrun
perframe*
preset
push,pop
rainbow
rangecolor
read
represent
reset
ribbackbone*
ribbon*
ribcolor*
ribinsidecolor*
ribrepr
ribscale
rlabel*
rmsd
rock
roll
rotation
save
savepos*
scale*
section
select*
set*
setattr*
shape
show*
sleep
solvate
restore a saved Chimera session show/hide pseudobonds representing missing segments extract volume data bounded by surfaces superimpose two models
apply the transformation matrix of one model to another write the current transformation matrices to a file read and apply transformation matrices from a file control per-model clipping
create a "molecule" from surface mesh for stick display energy-minimize structures (matchmaker) align models in sequence, then in 3D set color at the model level
set display at the model level
create a density map from atomic coordinates create a morph trajectory from two or more structures translate along the X, Y, or Z axis capture image frames and assemble them into a movie color multiscale surfaces to match atoms name and save the current selection create a shadowed stick/tube image (not on Windows) display graphical objects
read local files or fetch by ID send an annotated PDB file to the system shell specify an alias to be executed at each display frame apply a predefined combination of display settings push or pop images on the picture stack color residues, chains, or models over a range color over a range according to attribute values execute a command file, updating display at the end control atom/bond style (wire, stick, bs, sphere) restore default or saved orientations
allow display of both ribbon and backbone atoms display ribbon
set ribbon color
set a separate color for inside protein helix ribbons control ribbon style (flat, edged, rounded) control ribbon scaling (Chimera default, licorice) display residue labels
evaluate the RMSD between specified sets of atoms rock about the X, Y or Z axis
roll about the X, Y, or Z axis
make a bond rotatable
save the current Chimera session
save the current orientations
scale the view
move the clipping planes in parallel activate models for motion or select atoms set options (see Set/Unset Options) set an attribute to a specified value create a surface of a specified geometric shape display specified atoms, undisplay the others pause command processing add solvent using AmberTools
source split start
stereo
stop
surface*
surfcat
surfcolor
surfrepr surftransparency
swapaa
swapna
sym*
system
thickness
topography
turn
$v d w^{*}$
$v d w d e f i n e *$ $v d w d e n s i t y$ version viewdock volume vop wait window windowsize
write
writesel
execute a command file, updating display continually make chains of a molecule model separate submodels start Chimera tools by name
switch amongst stereo options and mono viewing exit from Chimera
calculate and display molecular surfaces (msms cat) group atoms for surface calculations set surface color source
(msms repr) control surface style (solid, mesh, dot)
** adjust molecular surface transparency
mutate amino acids or swap rotamers
mutate nucleic acid residues
generate symmetry copies that update automatically send a command to the system shell move the clipping planes in opposite directions plot values in a volume data plane as surface heights rotate about the X, Y, or Z axis
display van der Waals (VDW) surface set VDW radii
set VDW surface dot density show copyright information and Chimera version start ViewDock and load docking results visualize volume data such as electron density edit volume data to create a new volume data set suspend command processing until motion has stopped adjust the view to contain the specified atoms adjust the dimensions of the graphics window save atomic coordinates (pdb, mol2) write a list of the currently selected (or unselected) items

	Set/Unset Options
autocolor	make each new model a unique color
independent	make each model rotate about its own center
bg_color colorname	set background color to colorname
dc_color colorname	set depth-cueing color to colorname

Miscellaneous Operations (Default Settings)	
Action	Procedure
selection from screen	Ctrl-left mouse button
add/toggle selection	Shift-Ctrl-left mouse button
XY-rotation	left mouse button inside "spaceball"
Z-rotation	left mouse button outside "spaceball"
XY-translation	middle mouse button
Z-translation	Ctrl-middle mouse button
scaling	right mouse button or the Side View
preferences	Favorites... Preferences...
searching help	Help... Search Documentation...

Copyright © 2008 The Regents of the University of California
All Rights Reserved

Specification Symbols

Symbol	Function	Usage
\#	model number	\# model (integer)
\#.	submodel number	\#. submodel (integer)
:	residue	: residue (name or number)
::	residue name	:: residue
:	chain ID	:. chain
@	atom name	@atom
@.	alternate location ID	@.alt_loc
-	range	specifies a range of models, submodels, or residues
,	name separator	separates models or residues, ranges of models or residues, or names of atoms
*	whole wildcard	matches whole atom or residue names, e.g.,:*@CA specifies the alpha carbons of all residues
=	partial wildcard	matches partial atom or residue names, e.g., @ $\mathbf{C}=$ specifies all atoms with names beginning with C
?	single-char wildcard	used for atom and residue names only, e.g., :G?? selects all residues with three-letter names beginning with G
;	command separator	separates multiple commands on a single line
z<	zone specifier	$\mathbf{z}<$ zone or $\mathbf{z r}<$ zone specifies all residues within zone angstroms, za<zone specifies all atoms (rather than entire residues) within that distance. Using > instead of < gives the complement.
\&	intersection	intersection of specified sets
I	union	union of specified sets
\sim	negation	negation of specified set (when space-delimited)

Selected Atom Attributes

Usage	Description
@/altLoc=altloc	alternate location ID
@/areaSAS=sasa	solvent-accessible surface area
@/areaSES=sesa	solvent-excluded surface area
@/bfactor=bfactor	B-factor
@/color=color	atom-level color assignment
@/defaultRadius=rad	default VDW radius

@/display

@/drawMode=mode
@/element=atno
@/idatmType=type
@/label
@/label=label
@/labelColor=labcolor
@/name=name
@/occupancy=occupancy
@/radius=radius
@/serialNumber=n
@/surfaceCategory=category

@/surfaceDisplay \quad| per-atom surface display bit (can |
| :--- |
| be true for buried atoms with no |
| surface) |

Selected Residue Attributes

Usage	Description
$: /$ areaSAS=sasa	solvent-accessible surface area

:/areaSES=sesa solvent-excluded surface area
:/isHelix :/isHet
:/isStrand or :/isSheet
:/isTurn
:/kdHydrophobicity=value :/ribbonColor=ribcolor :/ribbonDisplay

whether the atomic display bit is

 "on"mode can be 0 (dot, as in wireframe), 1 (sphere, as in CPK), 2 (endcap, as in stick), or 3 (ball, as in ball-and-stick)
atomic number
Chimera atom type whether the atom is labeled text of the atom label color of the atom label atom name
crystallographic occupancy current VDW radius serial number in the input file surface calculation category (main, ligand, etc.) be true for buried atoms with no surface)
whether the residue is in an alpha helix whether the residue is in PDB HETATM records (or the mmCIF equivalent) whether the residue is in a beta strand whether the residue is assigned to a turn in the input file
Kyte-Doolittle amino acid hydrophobicity color of the residue's ribbon segment per-residue ribbon display bit (can be true for residues such as water that cannot be shown with ribbon)
:/type=resname

Selected Molecule Model Attributes

Usage	Description
\#/ballScale=factor	ball size relative to VDW radius
\#/color=color	model-level color assignment
\#/display	model display bit
\#/explicitHydrogens	whether the model has hydrogen atoms
\#/lineWidth=width	linewidth of wire representation

Specification Examples

\#

- all models
\#0
- model 0
\#3:45-83,90-98
- residues 45-83 and 90-98 in model 3
:lys,arg
- lysine and arginine residues
:12,14@ca
- alpha carbons in residues 12 and 14
:12:14@ca
- all atoms in residue 12 and the alpha carbon in residue 14
:.A@ca,c,n,o
- peptide backbone atoms in chain A
:50.B.D
residue 50 in chain B and all residues in chain D

:12-15,26-28.a,45.b

- residues 12-15 in all chains (except het/water), 26-28 in chain A,
and 45 in chain B
\#0.1-3,5
submodels 1-3 of model 0 and all of model 5
\#0.1-3,. 5
- submodels 1-3 of model 0 and submodel 5 of all models
ligand
- any/all residues automatically classified as ligand
element.S
- all sulfur atoms
@ca/!label and color!=green and color!=red
- atoms named CA which are not labeled, and are not green or red
@/color=yellow or color=blue and label
- atoms that are yellow and atoms that are both blue and labeled :asn/isHelix
- asparagine residues in alpha helices
\#1:asp,glu \& \#0 z<10
- aspartate and glutamate residues in model 1 within 10 angstroms of model 0
solvent \& Ng+ z<3 | solvent $\& \mathbf{N} 3+\mathbf{z}<\mathbf{3}$
- solvent residues within 3 angstroms of guanidinium nitrogens or $s p 3$-hybridized, formally positive nitrogens
@/bfactor>50 \& ~ solvent \& ${ }^{\sim}$ ions
-atoms with B-factor values over 50, excluding solvent and ions
UCSF Chimera was developed by the Computer Graphics Laboratory at the University of
California, San Francisco, under support of NIH grant P41-RR01081. The software is
copyrighted and licensed by the Regents of the University of California.

